Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 201-209, 2020.
Article in Chinese | WPRIM | ID: wpr-817684

ABSTRACT

@#【Objective】To unmask the effect of Orexin B on the synaptic transmission between feed-forward projection from the lateral geniculate nucleus(LGN)to orexin-sensitive neurons in layer 6b(L6b)of visual cortex(VC).【Methods】C57 mice at P25-P30 were used for micro-injection of CTB555 and ChR2-EGFP into LGN to label the neurons feedback projection to LGN from L6b and the feed-forward projection from LGN to the neurons in L6b of VC respectively. The EPSC in L6b cells was intracellularly recorded from the neurons labeled by CTB555.【Results】The neurons feedback projection to LGN in L6b are mainly pyramidal neurons, and the most of these cells are activated by orexin B,called orexin- sensitive neurons. Orexin B enhanced the NMDAR-mediated postsynaptic current in orexin-sensitive neurons in L6b by electrical or optical stimulation on the LGN projection to VC[electrical stimulation:(125.1 ± 3.7)%,optical stimulation:(123.8 ±3.8)%. In the case of OX2R′s blocker,the effect of Orexin B on EPSC amplitude disappeared with significant statistical significance,P < 0.05],thus,strengthening the synaptic transmission between LGN and orexin-sensitive neurons in L6b.【Conclusions】Orexin B enhances the synaptic transmission between LGN to pyramidal neurons in L6b of VC.

2.
Neuroscience Bulletin ; (6): 673-687, 2019.
Article in English | WPRIM | ID: wpr-776480

ABSTRACT

Ras-related C3 botulinum toxin substrate 1 (Rac1), a member of the Rho GTPase family which plays important roles in dendritic spine morphology and plasticity, is a key regulator of cytoskeletal reorganization in dendrites and spines. Here, we investigated whether and how Rac1 modulates synaptic transmission in mouse retinal ganglion cells (RGCs) using selective conditional knockout of Rac1 (Rac1-cKO). Rac1-cKO significantly reduced the frequency of AMPA receptor-mediated miniature excitatory postsynaptic currents, while glycine/GABA receptor-mediated miniature inhibitory postsynaptic currents were not affected. Although the total GluA1 protein level was increased in Rac1-cKO mice, its expression in the membrane component was unchanged. Rac1-cKO did not affect spine-like branch density in single dendrites, but significantly reduced the dendritic complexity, which resulted in a decrease in the total number of dendritic spine-like branches. These results suggest that Rac1 selectively affects excitatory synaptic transmission in RGCs by modulating dendritic complexity.

SELECTION OF CITATIONS
SEARCH DETAIL